Что такое сонар

СОНАР [от англ. so(und) na(vigation) and r(anging) — звуковая навигация и определение дальности] , 1) гидролокация. 2) Гидролокатор. Термин «сонар» встречается в переводной научно-технической литературе.
Гидролока́тор, или сона́р, (англ. sonar, аббревиатура от SOund Navigation And Ranging) — средство звукового обнаружения подводных объектов с помощью акустического излучения. В Великобритании до 1948 г. использовалось название «асдик» (англ. ASDIC, аббревиатура от Allied Submarine Detection Investigation Committee).
По принципу действия гидролокаторы бывают:
Пассивные — позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование) .
Активные — использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону гидролокатором.
Активный гидролокатор «Асдик» в его первоначальной примитивной форме был изобретён в конце первой мировой войны. Основной принцип его действия остался неизменным до настоящего времени. Однако за прошедшие годы эффективность гидролокатора значительно возросла, расширились масштабы его использования, а также увеличилось число классов кораблей, с которых он мог применяться для проведения поиска и атак подводных лодок противника.
Основу составляет приёмопередатчик, который посылает звуковые импульсы в требуемом направлении, а также принимает отражённые импульсы, если посылка, встретив на своём пути какой-либо объект, отразится от него. Эти посылки и отражённые сигналы после преобразования звучат очень похоже на то, как произносится слово «пинг» . Поэтому его стали называть «пингсетом» (англ. ping set), работу на нём назвали «пингинг» (англ. pinging), а офицера-специалиста по противолодочной борьбе — «пингер» (англ. pinger).
Вращая приёмопередатчик подобно прожектору, можно определить по компасу направление, в котором послан «пинг» , а следовательно, и направление объекта, от которого «пинг» отражён. Заметив промежуток времени между посылкой импульса и приёмом отражённого сигнала, можно определить расстояние до обнаруженного объекта.

otvet.mail.ru

Не многие в своей жизни слышали интересные слова. И одним из таких слов на сегодняшний день является слово сонар (sonar). В самом начале статьи уже можно сделать вывод, что данное слово не является словом русского происхождения. Ведь если бы это было русское слово, то наверняка его бы слышали чаще. И так, разберем значение слова СОНАР и его происхождение.

Если открыть обычные словари, то увидим, что сонар это аббревиатура и состоит из таких английских слов, как «SOund Navigation And Ranging». Если обратиться к переводчику, то дословный перевод будет таким «Звук Навигации И Начиная». Но смысловой перевод будет не много другим, и обратимся к Википедии: «сонар – это средство обнаружения предметов или объектов в воде при воздействии на них акустического излучения». Т.е. сонар – это то же самое, что и куда более известное слово ГИДРОЛОКАТОР. С одним значением слова сонар понятно.

Сонар в музыке. В музыке существует такая программа, как Cakewalk SONAR. Предназначена она для записи, редактирования видео или музыки. Почему в названии использовалось слово сонар, да потому что создатели программы хотели показать, что работа будет проводиться со звуком. И кстати здесь слово SONAR, используемо то же, как аббревиатура вышеуказанная.

Сонар в медицине. В медицине существует уникальный прибор Sonar vision. Функция этого прибора заключается в том, что он преобразует изображения в звук. И можно сделать вывод, что предназначен данный прибор для слепых.

Сонары в рыбалке. Каждый рыбак наверняка знает, что такое сонар. Ведь сонар (эхолот) на рыбалке используется для определения рыбы в водоеме. Сущность такая же, как и у гидролокатора.

Из приведенных примеров можно сделать вывод, что слово «сонар — sonar» — это аббревиатура нескольких слов, но вошло в лексикон, как самостоятельное слово и означает обнаружение предметов с помощью звуковых излучений. И в настоящее время большое количество производителей техники или приборов, а также программ используют слово «сонар» в названии своего продукта. К примеру: в данное время есть автомобильные шины Sonar. Но не понятно почему здесь использовано это слово. Если есть предположения, то напишите в комментариях.

chtooznachaet.ru

Сонары

Сонар — средство звукового обнаружения подводных объектов с помощью акустического излучения. Слово «сонар» происходит от англ. «sound navigation and ranging».

  • Принцип действия
  • Природа звука под водой
  • Обработка сигналов
  • Характеристики сонаров
  • Преобразователи
  • Угол излучения преобразователя
  • Состояние воды и дна
  • Применение сонара

Принцип действия

По принципу действия сонары делятся на активный и пассивный.

  • Пассивные — позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование)
  • Активные — использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону сонаром
Рис. 1. Принцип действия сонара
Рис. 1. Принцип действия сонара

Электрический импульс от передатчика превращается преобразователем в звуковую волну, которая распространяется в водной среде. Когда звуковая волна встречает на своем пути какое-либо препятствие, то часть ее отражается и возвращается обратно к преобразователю. Преобразователь превращает отраженную звуковую волну в электрический импульс, который усиливается приемником и выводится на дисплей. Так как скорость звука в воде постоянна (примерно 1500 м/с), то, измеряя время между отправкой сигнала и возвращением отраженного эха, можно определить расстояние до найденного объекта.

Природа звука под водой

Вода, в отличие от воздуха, имеет свойство распространять звуковые колебания на большие расстояния, в этом причина использования звуковых волн под водой. Электромагнитные волны не используются, так как они распространяются лишь на небольшие расстояния.

На распространение звуковых волн в водной среде влияют факторы:

  • частота и амплитуда звуковой волны
  • температура
  • соленость
  • глубина воды
  • расстояние распространения звука
  • другие факторы — неоднородности в воде, участки с турбулентностью, состояние поверхности воды, тип дна

Средняя скорость звука в воде – 1480 м/с, граничные скорости: от 1450 до 1540 м/с.

Обработка сигналов

  • 1. Генератора синусоидальных импульсов. Генератор состоит из двух компонентов: усилитель, выход которого подключен к собственному входу («положительная обратная связь»), из-за чего происходят колебательные отклонения сигнала; электрический фильтр, внутри которого находятся катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты подаваемого сигнала. На определенных частотах сопротивление возрастает, что препятствует прохождению сигнала
  • 2. Группа фильтров. Они занимаются амплитудным и фазовым затенением, формированием направления и формы пучка
  • 3. Сигнал подается на усилитель и на антенну, где он преобразуется в звуковые колебания. Излучаемый звуковой сигнал называется импульсом. Импульс движется к исследуемому объекту, отражается от него и возвращается назад к сонару. Сонар в это время находится в пассивном режиме и ожидает возвращения импульса, который снова переводится в электрический сигнал. Длительность импульса должна быть меньше времени, за которое импульс движется от сонара к цели и обратно, иначе на приемнике результат будет суммироваться с исходящими волнами

Еще раз рассмотрим фильтры и процессы, которые сигнал проходит после до того, как будет излучен антенной.

Квадратурная модуляция

Чем выше частота звука (соответственно, меньше длина волны), тем выше разрешающая способность сонара (более мелкие элементы могут быть обнаружены). С другой стороны, высокая частота несет меньше энергии в каждом колебании, поэтому оно подвергается большему воздействию шума, и отношение сигнал-шум уменьшается.

Рассмотрим одно отдельное колебание. Оно несет в себе максимум и минимум своей амплитуды. Информацию при этом передает максимум амплитуды, а минимум фактически не используется. Если дублировать исследуемый сигнал, сместить его по фазе на 90 градусов и сравнить с исходным, то максимум второго сигнала окажется на одном уровне с минимумом первого. Если передавать одновременно в одном канале эти два сигнала, их частоты останутся прежними, однако информационная насыщенность возрастет в 2 раза, так как передающий информацию максимум амплитуды будет встречаться в 2 раза чаще. Такая одновременная передача двух сигналов называется квадратурной модуляцией.

Эффект Доплера

Эффект изменения частоты звука при движении называется эффектом Доплера. Эффект Доплера для электромагнитных волн существенно отличается от наблюдаемого в воздухе, так как для электромагнитных волн отсутствует какая-либо среда-посредник, являющаяся третьей стороной в контакте приемника и передатчика волны.

Согласующий фильтр

Принятый сигнал сравнивается с исходным. В согласующем фильтре сигнал не только делится на фрагменты и сравнивается, но и суммируется с исходным сигналом, что позволяет уменьшить количество шумов, которые испытал на себе сигнал во время движения к цели и обратно. Здесь же первично оцениваются искажения сигнала и производится определение причины искажений.

Быстрое преобразование Фурье

В синусоиде, которая представляет сигнал, информация повторяется много раз. После преобразования Фурье эти повторения информации исчезают. Быстрое преобразование Фурье позволяет выполнять преобразование с меньшим количеством вычислений.

Что происходит с сигналом по прибытии на антенну:

  • 1. Предварительный усилитель и фильтр полосы частот
  • 2. Автоматическая регулировка усиления
  • 3. Квадратурная демодуляция
  • 4. Фильтр сглаживания и преобразование в цифровой вид
  • 5. Переход в согласующий фильтр (компрессия импульса, описанные выше действия; компенсация движения, микро-навигация, автофокус, искусственные методы повышения разрешения)
  • 6. Обработка изображения (формирование частей изображения, объединение их, программируемые обнаружение и классификация целей)

  • 7. Вывод на экран монитора

Характеристики сонаров

Общие требования к системе:

Передатчик большой мощности

Большая мощность передатчика гарантирует возможность получения четкого эхосигнала даже с больших глубин и при плохом состоянии воды и позволяет рассмотреть мелкие детали подводного мира.

Эффективный преобразователь

Прибор должен быть способен не только проводить сигналы высокой мощности, поступающие от передатчика, он должен преобразовывать электрическую волну в звуковую с минимальными потерями. Преобразователь должен распознавать и преобразовывать самое слабое эхо.

Чувствительный приемник

Приемник работает с сигналами в широком диапазоне. Он должен подавлять сигналы большой амплитуды во время работы передатчика и усиливать слабые электрические сигналы, которые возникают, когда возвращающийся эхосигнал достигает преобразователя. Приемник также должен обеспечивать четкую видимость на экране близкорасположенных целей, разделяя для этого электрические импульсы.

Экран с высоким разрешением и контрастностью

Экран должен иметь высокое разрешение, а также обладать высокой контрастностью. Это позволяет разглядеть на экране дугообразные эхосигналы и различные мелкие объекты, расположенные под водой.

Все части системы должны быть спроектированы для совместной работы при любых погодных условиях и при любых температурах.

Рабочая частота сонаров

Для большинства случаев как в пресной так и соленой воде частота 192 кГц дает лучшие результаты. На этой частоте лучше видны мелкие детали, с ней сонар лучше работает на мелководье и в движении, на экране получается меньше «шума» и нежелательных эхосигналов. На частоте 192 кГц достигается лучшее разрешение.

Но в определенных ситуациях лучше использовать частоту 50 кГц. Так, например, излучение сонара, работающего на частоте 50 кГц (при тех же условиях и при той же мощности), способно проникать на большую глубину, чем излучение на частоте 192кГц. Это связано со способностью воды поглощать звуковую энергию, имеющую разные частоты. Коэффициент поглощения для высоких частот больше, чем для низких. Поэтому частота 50 кГц используется в основном на больших глубинах. Угол расходимости звуковых волн при использовании частоты 50 кГц больше, чем у излучателей, работающих на частоте 192 кГц. Широкий угол обзора полезен при движении судна на мелководье, имеющем большое количество подводных скал и рифов.

Таб. 1 Разница между частотами 192 кГц и 50 кГц
192 kHz 50 kHz
мелководье большие глубины
узкий угол излучения узкий угол излучения
лучшее разрешение и разделение объектов меньшее разрешение
меньшая подверженность шумам больше шумовых помех

Преобразователи

Преобразователь является «антенной» сонара. Звуковые волны уходят от преобразователя и, распространяясь в воде, достигают какого-либо препятствия и затем, отражаясь, возвращаются обратно к преобразователю. Преобразователь выполняет две функции: преобразование электрической энергии в звуковую (излучатель) и обратно — звуковой в электрическую (приемник). Когда отраженная звуковая волна попадает на преобразователь, то он превращает ее в электрический сигнал, который поступает в приемно-усилительный блок сонара.

Каждый преобразователь может работать только на одной определенной частоте и эта частота должна совпадать с частотой, на которой работают передатчик и приемник сонара. Кроме того, преобразователь должен быть рассчитан на работу с той мощностью, которая развивается передатчиком, и при этом он должен преобразовывать в звуковую энергию максимальную часть поступающей в него электрической энергии. В то же время преобразователь должен быть достаточно чувствительным, чтобы регистрировать очень слабые возвращающиеся эхосигналы. Все это должно иметь место для одной определенной частоты (192 или 50кГц), в то время как эхосигналы других частот должны отфильтровываться.

Угол излучения преобразователя

Звуковые волны распространяются от преобразователя (излучателя-приемника) в определенном направлении. Когда звуковой импульс удаляется от преобразователя, то, чем больше становится расстояние, тем большую площадь охватывает этот импульс. Если изобразить распространение звуковых волн, то получится конус, вследствие чего появился термин «угол конуса», характеризующий расходимость звукового излучения. По оси конуса мощность звуковых волн максимальна, а по мере удаления от оси она постепенно уменьшается до нуля.

Рис. 2. Сигнал сонара, посланный с лодки
Рис. 2. Сигнал сонара, посланный с лодки

Чтобы определить значение величины угла конуса для определенного преобразователя, необходимо сначала измерить мощность излучения по оси конуса, а затем сравнить его со значениями, полученными в разных точках при удалении от оси. Далее нужно найти ту точку, в которой мощность излучения будет равна половине максимального значения (-3 db). Угол между линией, проведенной из вершины конуса через точку половинного значения мощности с одной стороны от оси и аналогичной линией с другой стороны оси, и будет искомым углом конуса.

Преобразователи с рабочей частотой 192 кГц выпускаются как с узким углом конуса, так и с широким. Преобразователи с широким углом конуса следует применять в большинстве случаев на пресноводных водоемах. В то время как преобразователи с узким углом следует применять во всех случаях рыбалки на море. Излучатели с рабочей частотой 50 кГц обычно имеют углы конуса в диапазоне от 30 до 45 градусов.

Угол эффективного конуса — это область внутри конуса излучения, эхосигналы из которой видны на экране эхолота. Увеличение уровня чувствительности увеличивает эффективный угол, позволяя видеть объекты, которые находятся гораздо дальше по сторонам.

Состояние воды и дна

На работу сонара оказывает влияние то, в какой воде он используется. В чистой пресной воде звуковые волны распространяются хорошо, а вот в соленой воде звук поглощается сильнее, к тому же он рассеивается на многочисленных взвешенных в морской воде частицах. Рассеиванию сигналов сонара способствуют содержащиеся в морской воде микроорганизмы, такие как мелкие водоросли и планктон. В пресной воде тоже есть течения и микроорганизмы, но их влияние на работу сонара значительно меньше.

Грязь, песок и водная растительность на дне сильно поглощают сигналы сонара, ослабляя тем самым отраженный сигнал, который формирует на экране линию дна. Камни, сланцы, кораллы и другие твердые объекты хорошо отражают сигналы сонара. Это различие заметно на экране сонара: мягкое дно, например, илистое, дает на экране тонкую линию. Твердое каменистое дно дает на экране широкую линию.

Применение сонара

Сонар имеет множество применений. Подводные лодки используют сонар для обнаружения других судов. Технологию применяют для измерения глубин (эхолот). Эхолот измеряет время, необходимое для звукового импульса, чтобы достичь дна водоема и вернуться обратно. Рыболовные суда используют эхолот или гидролокатор для поиска стай рыб.

Рис. 3. Внешний вид эхолота
Рис. 3. Внешний вид эхолота

Океанографы используют сонар, чтобы отобразить контуры дна водоема.

Сонары также используются при поиске нефти на суше. Это помогает определить места бурения, которые, скорее всего, содержат природные ресурсы (сейсморазведка).

В медицине используется особый вид сонара — УЗИ (ультразвуковое исследование) или эхоскопия. Звуковые волны разной частоты производят различное эхо при отражении от разных органов тела. Врачи научились использовать эти сигналы, чтобы определять заболевания или контролировать развитие ребенка в утробе матери.

Звуковые волны очень высокой частоты используют в медицине и промышленности для чистки поверхностей от мельчайших инородных частиц.

learnc.info

Что такое эхолот?

Мужчина держит эхолотЧеловек занимается ловлей рыбы не одну тысячу лет, и каждый рыбак непременно сталкивается с необходимостью решения двух основных проблем:

  1. Найти рыбное место.
  2. Выловить рыбу.

Эхолот или гидролокатор не способен притянуть рыбу к месту его установки, но он решает проблему поиска рыбного мета, сигнализируя своему владельцу об отсутствии или наличии особей на заданном участке.

Описание устройства

Хороший гидролокатор обладает четырьмя основными компонентами, без которых невозможна эффективная работа:

  1. Передатчик высокой мощности. Мощность данного прибора может гарантировать рыбаку отличный результат даже на глубоководье или при плохих климатических условиях. Кроме того, высокая мощность открывает возможность различать мельчайшие подробности (мальки и мягчайшие частицы дна).
  2. Преобразователь сигналов. Данный прибор должен быть способен не только проводить сигналы высокой мощности, поступающие от передатчика, он еще должен справляться с преобразованием электрической волны в звуковую с минимальными потерями. С другой же стороны, данный преобразователь должен без труда распознавать и преобразовывать даже самое малое эхо.
  3. Приемник с высоко чувствительностью. Такого типа устройство должно быть способно работать в широком диапазоне сигналов и отличать сильный и более слабый сигнал, пришедшие от преобразователя. Преобразователь должен различать предметы, расположенные близко и далеко друг от друга, и передавать их на дисплей.
  4. Дисплей с высоким разрешением. Чтобы наиболее четко показывать картинку подводного мира экран должен обладать не только высоким разрешением, но и максимальной контрастностью.

Все составляющие данного устройства должны функционировать слаженно в любых климатических условиях и даже в условиях критических температурных показателей.

Принцип действия

Принцип работы эхолота

В Англии эхолоты называют сонарами.

Данный термин образован от трех английских слов, имеющих следующие значения:

  • звук,
  • распространение,
  • перемещение;

Данные слова наиболее ярко отображают умения обычного эхолота.

Звук – параметр, с помощью которого обнаруживаются объекты, располагающиеся на серьезной глубине. От датчика устройства в глубину направляется электрический импульс, преобразуемый в звуковую волну.

Если данный импульс достигает объекта, расположенного в водной толще, причем данный объект может быть как статичным (неподвижным) так и динамичными (передвигающимся), волна от данного объекта отражается и возвращается в преобразователь устройства, с помощью которого на дисплее устройства формируется соответствующее изображение.

Область применения гидролокаторов

История возникновения данного устройства связана со временами Второй мировой войны и изначально его использовали только в военно-морской сфере.

Сонары тогда применялись исключительно военными судами для того, чтобы отслеживать местонахождение подводных лодок.

Сегодня же область применения такого рода устройств охватила и мирную сферу жизни и включает в себя:

  1. Поиск затонувших кораблей и лодок.
  2. Работа в различных исследовательских и научных экспериментах с целью изучения подводного мира.
  3. На рыбалке с целью обнаружения мест обитания и скопления рыбы.

Виды эхолотов

Мужчина с портативным эхолотомСуществует несколько классификаций такого рода приборов в зависимости от их параметров, принципа действия и метода установки.

В зависимости от параметров частоты различают следующие типы гидролокаторов:

  1. Однолучевой. Прибор с частотой 200 кГц. Такие сонары признаются оптимальными для рыболовов.
  2. Двухлучевой. Работает такой прибор на частоте 50 кГц (для детального изучения рельефа дна) и 200 кГц (оптимальная частота для обнаружения рыбы). Такого типа сонары максимально полезны при рыбалке на море.
  3. Трехлучевые, работают на частоте в 200 кГц, обеспечивают обзор поверхности на угол в 150 градусов. На экране при этом точно отображается место расположения объекта.
  4. Шестилучевые признаются многофункциональными приборами, позволяющими воспроизводить на дисплее трехмерную картину обследуемой площади.

В зависимости от габаритных размеров, которые напрямую влияют на область жизни, в которой будет применяться эхолот можно выявить два вида гидролокаторов:

  1. Портативный, удобный при эксплуатации в небольших водоемах.
  2. Стационарные эхолоты, используемые на кораблях.

Портативные же устройства, используемые на рыбалке, можно смело разделить в зависимости от сезонности использования на:

  1. Зимние тубусные эхолоты, работающие от обычной батарейки. Такие приборы показывают на экране боковой обзор.
  2. Летние, позволяющие рыбачить в летний период.
  3. Универсальные портативные эхолоты для зимней и летней рыбалки как на воде, так и на побережье.

Выбор

Прежде чем отправится в магазин для приобретения гидролокатора, следует определиться с целями и задачами, которые будет решать данный сонар.

Следует понимать, что в первую очередь сонар — это глубиномер, а только потом устройство для поиска рыбы. Поэтому следует четко представлять, какой именно гидролокатор необходим для решения той или иной задачи.

Критерии подбора

Современные гидролокаторы способны нормально функционировать как в обычном, фиксированном режиме, так и в динамичном, т.е. с возможностью перемещения.

Поэтому важно определиться в процессе подбора того или иного устройства с местом будущей ловли с применением данного прибора. Так, например, для рыбалки, в скромном водоеме можно полноценно использовать переносную модель.

Такого типа гидролокатор обладает удобными небольшими габаритами и будет наиболее удобным при походе на рыбалку, при ловле со льда зимой, с берега летом или лодки.

Не следует упускать из виду такой параметр, как количество пикселей экрана, т. к. от этого параметра напрямую будет зависеть качество получаемого изображения.

В данном случае непременно следует учитывать и характер водоема, в котором планируется ловля. Если речка глубиной не более 5 м., то следует приобретать эхолот с дисплеем в 2 тыс. пикселей. Для глубоководного водоема потребуется монитор с большим разрешением.

Основными же критериями выбора такого типа устройств считаются следующие параметры:

  • изготовитель;
  • характер водоема;
  • наличие GPS -навигации;
  • объем памяти устройства;
  • количество пикселей экрана;
  • количество сигналов, отправляемых прибором за 1 секунду;
  • наличие функции определения температуры воды;

Преимущества и недостатки

Плюсов у использования такого рода устройств огромное множество:

  1. При ловле рыбы на незнакомых участках или на новом водоеме рыбак может уже через небольшой промежуток времени знать все о том, какое дно у водоема, есть ли там ямы, коряги, а главное – рыба.
  2. Возможность одним прибором охватить большую площадь.
  3. Экономия времени, затрачиваемого на поиск наиболее подходящего места для рыбной ловли.
  4. Возможность отслеживать миграцию рыбы и двигаться за косяком. Данная функция очень важна пасмурную погоду, когда рыба может менять направление своего движения по нескольку раз за день.

Помимо преимуществ существуют у такого рода приборов и свои недостатки:

  1. Для получения более полной и точной картины дна необходимо постоянно перемещаться.
  2. Для того, чтобы наиболее эффективно пользоваться прибором и получать наиболее точные картины дна необходимо немало времени уделить изучению инструкции по эксплуатации.

Рейтинг лучших

В рейтинг лучших на сегодняшний день моделей локаторов, подходящих для ловли рыбы, попали:

Модель — FCV-587

Эхолот для рыбалки FCV-587

Изготовитель – Furuno.

Модель — Echo 550c

Эхолот для рыбалки Echo 550c

Изготовитель — Garmin

Модель — F33P

Эхолот для рыбалки F33P

Изготовитель – HawkEye

Модель — Elite-7 HDI

Эхолот для рыбалки Elite-7 HDI

Изготовитель — Lowrence

Отзывы владельцев

  1. Гидролокатор Fish Finder ffw718, Lucky беспроводной портативный — многие владельцы отмечают удобство прибора, доступную стоимость, простоту использования. А также отмечают проблемы с изображением, т. к. прибор, помимо искомой рыбы, показывает кучу различного мусора.
  2. Сонар Garmin модели 300c. Многие пользователи отмечают прекрасное изображение, простоту эксплуатации, долгий срок бесперебойной работы, но к недостаткам относят отсутствие крепления для проводов питания, что причиняет некоторый дискомфорт.
  3. Эхолот для зимней рыбалки Vexilar FL-20 Ultra. К преимуществам прибора можно отнести малое потребление питания, простоту использования, но неудобства причиняют габаритные размеры сонара.

Стоимость

  1. Приборы для зимней ловли: производитель — Humminbird, модель — 728x от 14 тыс. руб., модель — PiranxaMAX 175xRU от 4 тыс. руб., производитель — Lowrance, модель — Elite-4  — 23 тыс. руб.
  2. Приборы для ловли с берега: производитель — Rivotek, модель — Fisher 30 от 5 тыс. руб., производитель — JJ Connect Fischerman, модель —  Wireless 3 от 4 тыс. руб., производитель — Smartcast, модель — RF15e от 8 тыс. руб.
  3. Приборы для работы с лодки: производитель — Lowrance, модель — HD S-5x от 34 тыс. руб., модель — Mark-5x от 14, тыс. руб, производитель — Garmin, модель — Echo 100  от 6 тыс. руб.

Настройка

Мужчина настраивает эхолот LowranceПри первом включении прибора его автоматические настройки максимально близки к оптимальным, для осуществления поиска рыбы и определения параметров дна.

Единственное что может не устроить — это измерения, предоставляемые в фунтах и включенный режим идентификации рыбы, но это без труда можно исправить с помощью меню прибора.

Некоторые виды эхолотов напоминают установленные настройки, и при повторном включении будут работать в заданном ранее режиме:

  1. Режим идентификации рыбы создан для обнаружения рыбы. Эхолот в данном режиме,способен разглядеть изображение рыб. К сожалению, данный режим не способен работать со 100 процентной точностью. Этот режим может быть полезен в поиске косяков рыб, или для начинающих пользователей эхолотов.
  2. Многоэкранное изображение обычно является более удобным для пользователей и позволяет детально рассмотреть необходимые участки.
  3. Рабочие настройки, такие как чувствительность, диапазон глубин и т. д. не рекомендуется менять. Настройка данных параметров необходима только в решении специфичных задач.

Несколько советов по выбору

Эхолот для рыбалки

  1. Lowrance – производитель эхолотов, признанный лучшим на современном рынке. Ранее данная компания занималась изготовлением исключительно военной техники.
  2. Модели с несколькими лучами гораздо лучше ввиду того, что они позволяют охватить большую площадь без мертвых зон.
  3. Чем больше пикселей у экрана, тем он лучше и удобнее.
  4. Перед тем как совершить покупку следует определиться с местом рыбалки.

Следуя данным советам, любой желающий сможет правильно подобрать гидролокатор, подходящий ему по функциональности и типу за оптимальную цену.

primanki.com

Что такое сонар

  1. СОНАР от англ. so(und) na(vigation) and r(anging) — звуковая навигация и определение дальности , 1) гидролокация. 2) Гидролокатор. Термин «сонар» встречается в переводной научно-технической литературе.
    Гидролока#769;тор, или сона#769;р, (англ. sonar, аббревиатура от SOund Navigation And Ranging) средство звукового обнаружения подводных объектов с помощью акустического излучения. В Великобритании до 1948 г. использовалось название асдик (англ. ASDIC, аббревиатура от Allied Submarine Detection Investigation Committee).
    По принципу действия гидролокаторы бывают:
    Пассивные позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование) .
    Активные использующие отражнный или рассеянный подводным объектом сигнал, излучнный в его сторону гидролокатором.
    Активный гидролокатор Асдик в его первоначальной примитивной форме был изобретн в конце первой мировой войны. Основной принцип его действия остался неизменным до настоящего времени. Однако за прошедшие годы эффективность гидролокатора значительно возросла, расширились масштабы его использования, а также увеличилось число классов кораблей, с которых он мог применяться для проведения поиска и атак подводных лодок противника.
    Основу составляет примопередатчик, который посылает звуковые импульсы в требуемом направлении, а также принимает отражнные импульсы, если посылка, встретив на свом пути какой-либо объект, отразится от него. Эти посылки и отражнные сигналы после преобразования звучат очень похоже на то, как произносится слово пинг . Поэтому его стали называть пингсетом (англ. ping set), работу на нм назвали пингинг (англ. pinging), а офицера-специалиста по противолодочной борьбе пингер (англ. pinger).
    Вращая примопередатчик подобно прожектору, можно определить по компасу направление, в котором послан пинг , а следовательно, и направление объекта, от которого пинг отражн. Заметив промежуток времени между посылкой импульса и примом отражнного сигнала, можно определить расстояние до обнаруженного объекта.
  2. радар который ловит звуковые волны
  3. Радар, но основанный не на электромагнитных импульсах, а на звуковых. Работает под водой, так сказать подводный звуковой радар. Аналогично действуют летучие мыши и дельфины.

4u-pro.ru

 Сонары используются для обнаружения и исследования подводных объектов, в то время как похожие устройства, называемые радары — для исследования надводных, наземных, воздушных и космических объектов. Многое из того, что сказано ниже про сонары, справедливо и для радаров, либо имеет очевидные сходства.Что такое сонар

Я заметил, что в интернете нет материалов по данной теме, описывающих все процессы в связи друг с другом и понятными словами. В статье мы пройдем весь путь от особенностей распространения звуковых волн в воде до процессов внутри сонара. Сделать это я намереваюсь просто и ясно, чтобы заинтересовать как любопытных читателей, так и тех, кому через 2 часа надо сдать устный экзамен по подводной акустике. Предполагается, конечно, что кто-то из одной, либо из другой обозначенной группы может не иметь никаких знаний по данной теме, поэтому все начнется с основ.

Задолго до того, как Шелдон поможет разобраться с эффектом Доплера, мы погружаемся под воду, чтобы начать знакомство с тем, как происходит и от чего зависит распространение звуковых волн в водной среде.

Природа звука под водой

Колебания – это движения, в той или иной степени повторяющиеся во времени. Колеблющееся тело может отдавать свою энергию во внешнюю среду. Звук – это механические колебания в какой-либо среде. Частицы (молекулы) внешней среды представляют собой миниатюрные колебательные системы, связанные друг с другом упруго, поэтому колебание, создаваемое телом, может распространяться в среде на некоторое расстояние. Вода, в отличие от воздуха, имеет свойство распространять звуковые колебания на очень большие расстояния, в этом причина использования звуковых волн под водой. Электромагнитные волны вместо звуковых -использовать не получится: они не распространяются в воде.

На распространение звуковых волн в водной среде влияют множество факторов: частота и амплитуда звуковой волны, температура, соленость и глубина воды, расстояние распространения звука (и связанная с этим постепенная трансформация звука в тепло — абсорбция), а также другие местные факторы (неоднородности в воде, участки с турбулентностью, состояние поверхности воды – пузырьки воздуха, дождь и ветер; тип дна – ил, песок, гравий или скала).
Чем больше температура, соленость, глубина, т.е. чем выше плотность воды – тем выше скорость распространения звука. Изменение этих трех параметров также влияет на искривление направления движения звука в воде, а также на величину пространственного угла распространения.

Часто в умеренных широтах температура в поверхностных слоях воды быстро понижается, что снижает скорость звука, фокусирует звуковую волну на некоторой глубине, удаляя ее от поверхности. Напротив, когда температура у поверхности постоянна (например, в тропиках вода прогревается довольно глубоко), на скорость звука влияет только глубина, и из-за этого скорость звука в поверхностных водах увеличивается только благодаря глубине. В таких водах звук фокусируется возле поверхности, постоянно отражаясь от нее и возвращаясь к ней снова. Средняя скорость звука в воде – 1480 метров в секунду, граничные скорости: от 1450 до 1540 м/с.

Чем выше частота звука, тем быстрее он рассеивается. Это вызывается трансформированием энергии звука в тепло, рассеиванием из-за неоднородностей в воде и при подходящей глубине затуханием на дне (в первую очередь если дно – ил или песок), либо возле поверхности по причине дождя, ветра, пузырьков воздуха и т.п.; при штиле потери на поверхности незначительны, так как поверхность воды отражает более 99% звука.

Все эти данные позволяют создавать шаблоны настроек сонара и просчитывать возможные время и траектории распространения звуковых волн, настраивать сонар с максимальной эффективностью.

vsyainfa.xyz

Что такое радар?

Сонар

Слово «Радар» («Radar») было образовано от английского словосочетания «radio detection and ranging»(«радиообнаружение и дальность»). Радиоволны представляют собой тип электромагнитного излучения (микроволновые печи, рентгеновские лучи и световые волны другого типа). Это основа данной технологии. Дальность означает измерение расстояния до цели от РЛС (устройство, которое отправляет радиосигнал и принимает обратно его отражение).

Радар использует радиоволны. Похожая система называется «оптический радар» или «лидар» («lidar» — от англ. «light detection and ranging» — «световое обнаружение и дальность»), которая основывается на том же принципе, что и радар, но использует световые волны.

Как радар работает

РЛС FURUNO FR-8062

РЛС (также называемые радиолокационными станциями) бывают разных размеров, в зависимости от тех целей, где их используют. Но все они состоят из четырех основных частей: передатчика, антенны, приемника и дисплея. Передатчик испускает радиоволны. Когда радиоволна доходит до объекта, например самолета, она отражается обратно к станции. Антенна обнаруживает отраженный сигнал и отправляет на приемник, который его увеличивает и усиливает. Затем, сигнал отправляется на дисплей как изображение.

Выглядит изображение, обычно, как схематичная карта типа «вид сверху». На дисплее отображаются яркие пятна, назовем их всплески. Всплески показывают участки суши, а также различные объекты — такие как самолеты, корабли и т.д. Оператор может выбрать эти объекты, так как они находятся в движении, тогда как земля неподвижна.

Основной тип радара — импульсный радар. Он отправляет радиоволны короткими очередями или импульсами. Расстояние до цели определяется временем, за которое сигнал доходит до цели и возвращается обратно. Скорость радиосигнала сравнима со скоростью света и составляет 300 000 км/с. Соответственно, если сигнал возвращается за 1/1000 секунды, проходит расстояние в 300 км, то цель должна быть на половине пройденного расстояния, т.е. в 150 км удаленности.

Импульсная передача позволяет определить расстояние более точно. Почему это так? Представьте себе, как Вы кричите, чтобы услышать эхо. Если Вы кричите продолжительное время, то первые слова вернутся прежде, чем Вы закончите, и Вы не сможете услышать все предложение. Но если Вы крикните что-то короткое, то без проблем распознаете свое эхо.

Расположение цели по отношению к РЛС определяется немного иначе. Радарная антенна отправляет импульсы узким лучом, примерно как светит фонарь. Антенна и, соответственно, луч вращается медленно и проходит через все возможные препятствия в поисках целей. Сигнал отражается от корабля или какой-либо другой цели, только если луч задел её. Возвращенный сигнал усиливается приемником и отображается на мониторе, где показывается расстояние и направление до цели.

РЛС Koden MDC-2900 Series

Применение радара

Радар применяется как в военных, так и в гражданских целях. Наиболее распространенное применение в гражданских целях — это помощь в навигации для морских и воздушных судов. РЛС, установленные на судах или в аэропорту, собирают информацию о других объектах, чтобы предотвратить возможные столкновения. На море собирается информация о буях, скалах и т.д. В воздухе РЛС помогают заходить на посадку воздушным судам, в условиях плохой видимости или неисправности.

Также радары используются в метеорологии, при прогнозировании погодных условий. Синоптики, как правило, используют их в сочетании с лидаром (оптическим радаром) для изучения штормов, ураганов и других погодных катаклизмов. Доплеровский радар основывается на принципе эффекта Доплера – т. е. изменение частоты и длины волны для наблюдателя (приемника) из-за движения источника излучения или наблюдателя (приемника). Анализируя изменения частоты отраженных радиоволн, доплеровский радар может отслеживать движение штормов и развитие торнадо.

Ученые используют радары, чтобы отслеживать миграцию птиц и насекомых, определять расстояние до планет. Потому как он может показать в каком направлении и как быстро движется объект, радар используется полицией для определения нарушений скоростного режима. Подобные технологии используются в спорте, например в теннисе, чтобы определить скорость подачи. Радар используют спецслужбы, чтобы сканировать объекты. В военных целях радары, в большей степени, применяют в качестве поиска целей и управления огнем.

История радара

История радарной технологии началась с экспериментов с использованием радиоволн немецким физиком Генрихом Герцом в 1887 году. Он обнаружил, что волны могут проходить через одни объекты, но отражаться другими. В 1900 году Никола Тесла заметил, что крупные объекты могут отражать достаточно сильные сигналы. Он понял, что волны были отраженными радиосигналами, и предсказал, что они могут быть использованы для поиска положения и направления судов в открытом море.

Впервые импульсный радар был представлен в США в 1925 году. В 1935 году радар был запатентован в британском патентном бюро как результат исследований во главе с шотландским физиком Робертом Александром Уотсон-Уоттом. Этот запатентованный радар был применен в радарных системах, которые оказались эффективны против немецкой авиации во время воздушных налетов на Великобританию, в период Второй мировой войны.(1939-1945 г.г.) Термин «радар» был впервые использован учеными ВВС США во время этой войны.

Прогресс в сфере радарных технологий продолжается до сих пор, усилия направлены на улучшение качества изображения, точности размера и снижения стоимости.

Двухчастотный сонар Furuno CH-300

Что такое сонар?

Слово «сонар» происходит от англ. «sound navigation and ranging». Сонар может обнаруживать и определять местоположение объектов в толще воды при помощи эхо, аналогично дельфинам и другим морским животным, которые используют принцип эхолокации.

Как сонар работает

Есть два типа сонара: активный и пассивный. Активный отправляет импульсы и затем принимает отраженный сигнал эхо. Пассивный принимает сигнал, без отправки собственного. В активных гидроакустических системах звуковые сигналы намного мощнее, чем обычные звуки. Каждый импульс длится доли секунды.

Некоторые сонары излучают звуки, которые Вы можете услышать. Другие сигналы настолько высоки, что человеческое ухо не в силах их воспринять. Такие сигналы называются ультразвуковыми волнами (за пределами звука). У сонара имеется собственный приемник, который способен принять возвращенный эхо-сигнал. Положение объектов под водой можно определить по разнице между отправкой и приемом звукового сигнала.

Применение сонара

Сонар имеет множество применений. Подводные лодки используют сонар для обнаружения других судов. Технологию применяют для измерения глубин (эхолот). Эхолот измеряет время, необходимое для звукового импульса, чтобы достичь дна водоема и вернуться обратно. Рыболовные суда используют эхолот или гидролокатор для поиска стай рыб.

Полнокруговой сонар Furuno CSH-8L Mark-2

Океанографы используют сонар, чтобы отобразить контуры дна водоема. Звуковые сигналы могут пробивать толщу дна сквозь ил и песок и отрисовать слой породы под ними. Сигнал затем возвращается, давая расстояние до твердой поверхности.

Тот же принцип используется при поиске нефти на суше. Сонар отправляет импульс сквозь землю, импульс отражается с различной частотой от разных слоев почвы, и геологи могут определить какие виды грунта и пород присутствуют в почве. Это помогает определить места бурения, которые, скорее всего, содержат природные ресурсы. Это называется сейсморазведка.

Особый вид сонара используется в медицине и называется УЗИ (ультразвуковое исследование) или эхоскопия. Звуковые волны разной частоты производят различное эхо при отражении от разных органов тела. Врачи научились использовать эти сигналы, чтобы определять заболевания или контролировать развитие ребенка в утробе матери.

Звуковые волны очень высокой частоты используют в медицине и промышленности для чистки поверхностей от мельчайших инородных частиц.

История сонара

Сонар изобрела природа, задолго до того, как об этом задумался человек. Например, летучие мыши летают в темноте. Обходя препятствия и находя добычу при помощи ультразвуковых волн, которые человек услышать не в состоянии.

В 1906 году, американский военно-морской архитектор Льюис Никсон изобрел первый сонар для поиска айсбергов. Во время Второй мировой войны интерес к этой технологии возрос, т.к. возникла необходимость в обнаружении подводных лодок противника. В 1915 году такую первую действующую модель изобрел французский физик Поль Ланжевен. Первые приборы могли только слушать сигналы, но не могли излучать. Но уже к 1918 году Великобритания и Соединенные Штаты произвели образцы, которые могли отправлять сигнал и получать его обратно. Так же, как и с радарными технологиями, технологии сонаров постоянно совершенствуются и по сей день. Например, в 2000-х годах ВМС США ввели в оборот сонары, которые чистили военные мины.

seacomm.ru

background image

Справочное руководство C-Series

Эксклюзивный дистрибьютор компании Raymarine в России ООО «Микстмарин» т. (495)

788-05-08

6-2

6.2 Как работает рыбопоисковый эхолот?

Приложению рыбопоискового эхолота необходим цифровой модуль
эхолота Raymarine для обработки сигналов сонара из соответствующе-
го датчика и создания детального изображения. Особенности цифрово-
го модуля эхолота:

Очень высокая частота передачи сигналов (посылаемых импуль-
сов) и цифровой адаптивный высокочастотный приемник, обеспечи-
вающий высокую степень детализации и идеальное цветовое рас-
пределение.

Цифровая адаптация ширины полосы пропускания, которая динами-
чески регулирует ширину полосы пропускания приемника от макси-
мально широкой до максимально узкой в соответствии с водными
условиями и обеспечивает высокую степень обнаружения рыбы и
дна во всех условиях.

Двойная частота (200 кГц и 50 кГц) и, в зависимости от датчика, вы-
ходная мощность до 1000 ватт (RMS) и функционирование на глуби-
не от 3 ф. (1 м) до 5000 ф. (1700 м)

Что такое сонар?

Сонар (SONAR) — сокращенно от SOund NAvigation and Ranging (при-
ближенный перевод — навигация и измерение расстояния с помощью
звука).

Звуковые волны проходят сквозь воду и отражаются от мест, где их
скорость внезапно меняется. Чем больше глубина, тем дольше звук
идет ко дну и возвращается; с уменьшением глубины это время сокра-
щается. Рыбопоисковые эхолоты работают по тому же принципу.

Датчик посылает в воду импульсы высокочастотных звуковых волн и
измеряет время, за которое звуковая волна доходит до дна и обратно.
На отраженные звуковые сигналы влияет структура дна и любые дру-
гие объекты, встречающиеся на их пути, например, рыба, обломки су-
дов, рифы. Эхо-сигналы обрабатываются, затем выводятся на экран
рыбопоискового эхолота как изображение подводного мира. Некоторые
датчики позволяют выводить на экран рыбопоисковых эхолотов темпе-
ратуру воды и/или скорость.

Время между звуковыми импульсами зависит от модели сонара, но
обычно его достаточно для того, чтобы эхо-сигнал вернулся с самой
большой глубины, установленной в устройстве. Рыбопоисковые эхоло-
ты обычно работают в различных диапазонах глубины, поэтому время
между сигналами, называемое частотой посылаемых импульсов, отли-
чается для всех диапазонов. Частота посылаемых импульсов должна
быть достаточно высокой, чтобы эхо-сигналы возвращались от каждо-
го посланного сигнала, и должна быть точно синхронизирована с дисп-
леем рыбопоискового эхолота. Типичная частота посылаемых импуль-
сов находится в пределах от 2 до 24 в секунду.

Как интерпретировать данные сонара?

Интенсивность эхо-сигналов обозначается на экране различными цве-
тами. Вы можете использовать эту информацию для определения раз-
мера рыбы и структуры дна. Другие объекты в воде, такие как обломки
пород и пузырьки воздуха, также отражают эхо-сигналы.

www.manualsdir.ru

Categories: Эхолоты

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.